Section 8.4

Area of a Triangle

THEOREM

The area K of a triangle is

where b is the base and h is an altitude drawn to that base.

Copyright © 2013 Pearson Education, Inc. All rights reserved

1 Find the Area of SAS Triangles

The area A of a triangle equals one-half the product of two of its sides times the sine of their included angle.

EXAMPLE

Finding the Area of an SAS Triangle

Find the area K of the triangle for which $a=8, b=6$, and $C=30^{\circ}$.

$$
K=\frac{1}{2} a b \sin C=\frac{1}{2} \cdot 8 \cdot 6 \cdot \sin 30^{\circ}=12 \text { square units }
$$

2 Find the Area of SSS Triangles

THEOREM

Heron's Formula

The area K of a triangle with sides a, b, and c is

$$
K=\sqrt{s(s-a)(s-b)(s-c)}
$$

where $s=\frac{1}{2}(a+b+c)$.

EXAMPLE

Finding the Area of an SSS Triangle
Find the area of a triangle whose sides are 3,5 , and 6 .

$$
\begin{gathered}
s=\frac{1}{2}(a+b+c)=\frac{1}{2}(3+5+6)=7 \\
K=\sqrt{7(7-3)(7-5)(1-6)}=\sqrt{7 \cdot 4 \cdot 2 \cdot 1}=\sqrt{56}=2 \sqrt{14}
\end{gathered}
$$

$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

