Section 8.3

The Law of Cosines

- Case 3: Two sides and the included angle are known (SAS).
- **Case 4:** Three sides are known (SSS).

THEOREM

Law of Cosines

For a triangle with sides a, b, c and opposite angles A, B, C, respectively,

$$c^2 = a^2 + b^2 - 2ab\cos C$$

$$b^2 = a^2 + c^2 - 2ac \cos B$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Solve SAS Triangles

EXAMPLE Using the Law of Cosines to Solve an SAS Triangle

Solve the triangle: a = 2, b = 3, $C = 60^{\circ}$

$$C^{2} = a^{2} + b^{2} - 2ab \cos C$$

$$C^{2} = 2^{2} + 3^{2} - 2(2)(3) \cos 60^{\circ}$$

$$C^{2} = \sqrt{13 - 12 \cos 60}$$

$$2^{2} = 3^{2} + \bigcirc^{2} - 2(3)(\bigcirc) \cos A$$

 $4 = 9 + 7 - 15.87 \cos A$

$$-12 = -15.87 \cos A$$

$$A = \cos^{-1} \frac{-12}{-15.87}$$

2 Solve SSS Triangles

EXAMPLE Using the Law of Cosines to Solve an SSS Triangle

Solve the triangle: a = 4, b = 3, c = 6

$$4^{2} = 3^{2} + 6^{2} - 2(3)(6) \cos A$$

$$16 = 45 - 36 \cos A$$

$$-29 = -36 \cos A$$

$$A = \cos^{-1} \frac{-29}{-36}$$

$$3^{2} = 4^{2} + 6^{2} - 2(4)(6)\cos 8$$

 $9 = 52 - 48\cos 8$

$$-43 = -48 \cos B$$

$$B = \cos^{-1} \frac{-43}{-48}$$

pg 535 # 9-32