Section 8.2

The Law of Sines

CASE 1: One side and two angles are known (ASA or SAA).
Case 2: Two sides and the angle opposite one of them are known (SSA).
Case 3: Two sides and the included angle are known (SAS).
CASE 4: Three sides are known (SSS).

Case 1: ASA

Case 1: SAA

Case 2: SSA

Case 3: SAS

Case 4: SSS

The Law of Sines is used to solve triangles for which Case 1 or 2 holds.

THEOREM

Law of Sines

For a triangle with sides a, b, c and opposite angles A, B, C, respectively,

$$
\begin{equation*}
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \tag{1}
\end{equation*}
$$

Case 1: ASA

Case 1: SAA

Case 2: SSA

1 Solve SAA or ASA Triangles

EXAMPLE Using the Law of Sines to Solve an SAA Triangle
Solve the triangle: $A=40^{\circ}, B=60^{\circ}, a=4$

$$
\begin{aligned}
& \frac{\sin 40^{\circ}}{4}=\frac{\sin 80^{\circ}}{c} \\
& c=\frac{4 \sin 80^{\circ}}{\sin 40^{\circ}} \\
& c=6.13
\end{aligned}
$$

$$
\frac{\sin 40^{\circ}}{4}=\frac{\sin 60^{\circ}}{b}
$$

$$
b \sin 40^{\circ}=4 \sin 60^{\circ}
$$

$$
b=\frac{4 \sin 60^{\circ}}{\sin 40^{\circ}}
$$

$$
b=5.39
$$

EXAMPLE
 Using the Law of Sines to Solve an ASA Triangle

Solve the triangle: $A=35^{\circ}, B=15^{\circ}, c=5$

2 Solve SSA Triangles

SSA --- The Ambiguous Case

No Triangle If $a<h=b \sin A$, then side a is not sufficiently long to form a triangle. See Figure 14.

Figure 14
$a<h=b \sin A$

One Right Triangle If $a=h=b \sin A$, then side a is just long enough to form a right triangle. See Figure 15.

Figure 15

$$
a=h=b \sin A
$$

Two Triangles If $h=b \sin A<a$, and $a<b$ two distinct triangles can be formed from the given information. See Figure 16.

Figure 16
$b \sin A<a$ and $a<b$

One Triangle If $a \geq b$, only one triangle can be formed. See Figure 17.

pg. 527 \# 9-24

