Section 7.5

Sum and Difference Formulas

Sum and Difference Formulas for Cosines

$$
\begin{aligned}
& \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta
\end{aligned}
$$

Sum and Difference Formulas for Tangents

$$
\begin{aligned}
& \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\
& \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}
\end{aligned}
$$

Sum and Difference Formulas for Sines

$$
\begin{aligned}
& \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta
\end{aligned}
$$

1 Use Sum and Difference Formulas to Find Exact Values

EXAMPLE
Using the Sum Formula to Find an Exact Value
Find the exact value of $\cos \frac{7 \pi}{12}$.

$$
\frac{\pi}{4}+\frac{\pi}{3}=\frac{7 \pi}{12}
$$

$\cos \left(\frac{\pi}{4}+\frac{\pi}{3}\right)$

$$
\frac{3 \pi}{12}+\frac{4 \pi}{12}
$$

$\cos \frac{\pi}{4} \cos \frac{\pi}{3}-\sin \frac{\pi}{4} \sin \frac{\pi}{3}$

$$
\frac{\sqrt{2}}{2} \cdot \frac{1}{2}-\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}
$$

$$
\frac{\sqrt{2}-\sqrt{6}}{4}
$$

$$
\frac{\sqrt{2}(1-\sqrt{3})}{4}
$$

\square
EXAMPLE
Using the Difference Formula to Find an Exact Value
Find the exact value of $\cos 15^{\circ}$.
$\cos \left(45^{\circ}-30^{\circ}\right)$
$\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ}$
$\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \cdot \frac{1}{2}$

\square
EXAMPLE
Using the Sum Formula to Find an Exact Value
Find the exact value of $\sin \frac{19 \pi}{12}$.

$$
\begin{aligned}
& \frac{5 \pi}{4}+\frac{\pi}{3} \\
& \frac{15 \pi}{12}+\frac{4 \pi}{12}
\end{aligned}
$$

$\sin \left(\frac{5 \pi}{4}+\frac{\pi}{3}\right)$
$\sin \frac{5 \pi}{4} \cos \frac{\pi}{3}+\cos \frac{5 \pi}{4} \sin \frac{\pi}{3}$

$$
-\frac{\sqrt{2}}{2} \cdot \frac{1}{2}+-\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}
$$

$$
\frac{-\sqrt{2}-\sqrt{6}}{4}
$$

EXAMPLE

Using the Difference Formula to Find an Exact Value
Find the exact value of $\cos 40^{\circ} \cos 80^{\circ}-\sin 40^{\circ} \sin 80^{\circ}$.

$$
\cos \left(40^{\circ}+80^{\circ}\right)
$$

$\cos 120^{\circ}$

$$
-\frac{1}{2}
$$

EXAMPLE Finding Exact Values
If it is known that $\sin \alpha=\frac{3}{5}, \frac{\pi}{2}<\alpha<\pi$, and that $\sin \beta=-\frac{1}{\sqrt{5}}=-\frac{\sqrt{5}}{5}$, $\frac{3 \pi}{2}<\beta<2 \pi$, find the exact value of
(a) $\cos \alpha$
(b) $\cos \beta$
(c) $\cos (\alpha+\beta)$

a. $\cos \alpha=-\frac{4}{5}$

$$
\begin{aligned}
5^{2} & =3^{2}+x^{2} \\
25 & =9+x^{2} \\
16 & =x^{2} \\
4 & =x
\end{aligned}
$$

C. $\cos (\alpha+\beta)$
$\cos \alpha \cos \beta-\sin \alpha \sin \beta$ $-\frac{4}{5} \cdot \frac{2 \sqrt{5}}{5}-\frac{3}{5} \cdot-\frac{\sqrt{5}}{5}$

$$
\begin{aligned}
& 5=x^{2}+1 \\
& 4=x^{2} \\
& 2=x
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{5 \sqrt{5}}{25} \\
& -\frac{\sqrt{5}}{5}
\end{aligned}
$$

