7.3 Trigonometric Equations

Solve
$$2 \sin \theta + \sqrt{3} = 0$$
, $0 \le \theta \le 2\pi$.
 $2 \sin \theta = -\sqrt{3}$
 $\sin \theta = -\frac{\sqrt{3}}{2}$
 $\theta = 4\pi$, 5π

Solve
$$\tan (\theta - \frac{\pi}{2}) = 1$$
, $0 \le \theta \le 2\pi$

$$\Theta - \frac{\pi}{2} = \frac{\pi}{4}$$

$$\Theta - \frac{\pi}{2} = \frac{\pi}{4} \qquad \Theta - \frac{\pi}{2} = \frac{5\pi}{4}$$

$$\Theta = \frac{3\pi}{4}$$

$$\Theta = \frac{3\pi}{4} \qquad \Theta = \frac{7\pi}{4}$$

Solve
$$\sin(2\theta) = \frac{1}{2}, 0 \le \theta \le 2\pi$$
.

$$2\theta = \frac{\pi}{6} + 2\pi$$
 $2\theta = \frac{5\pi}{6} + 2\pi$

$$\Theta = \frac{\pi}{12} + \pi \qquad \Theta = \frac{5\pi}{12} + \pi$$

$$\Theta = \frac{\pi}{12}, \frac{5\pi}{12}, \frac{13\pi}{12}, \frac{17\pi}{12}$$

Solve
$$4 \cos^2 \theta = 1$$
, $0 \le \theta \le 2\pi$.
 $\cos^2 \theta = \frac{1}{4}$
 $\cos \theta = \sqrt{\frac{1}{4}}$
 $\cos \theta = \pm \frac{1}{2}$
 $\theta = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$

pg. 478 # 13-36