Chapter 7 Analytic Trigonometry

Section 7.1

The Inverse Sine, Cosine, and Tangent Functions

Review of Properties of Functions and Their Inverses

```
1. \(f^{-1}(f(x))=x\) for every \(x\) in the domain of \(f\) and \(f\left(f^{-1}(x)\right)=x\) for every \(x\) in
    the domain of \(f^{-1}\).
2. Domain of \(f=\) range of \(f^{-1}\), and range of \(f=\) domain of \(f^{-1}\).
3. The graph of \(f\) and the graph of \(f^{-1}\) are symmetric with respect to the line
    \(y=x\).
4. If a function \(y=f(x)\) has an inverse function, the equation of the inverse
function is \(x=f(y)\). The solution of this equation is \(y=f^{-1}(x)\).
```


The Inverse Sine Function

$$
y=\sin ^{-1} x \quad \text { means } \quad x=\sin y
$$

$$
\text { where }-1 \leq x \leq 1 \text { and }-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}
$$

$$
\begin{aligned}
& y=\arcsin x \\
& y=\sin ^{-1} x
\end{aligned}
$$

$$
y=\sin ^{-1} x,-1 \leq x \leq 1,-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}
$$

1 Find the Exact Value of an Inverse Sine Function

EXAMPLE Finding the Exact Value of an Inverse Sine Function
Find the exact value of: $\sin ^{-1} 1=\frac{\pi}{2}$

$$
\sin ?=1
$$

$\sin \frac{\pi}{2}=1$

EXAMPLE
Finding the Exact Value of an Inverse Sine Function
Find the exact value of: $\sin ^{-1}\left(-\frac{1}{2}\right)=\frac{11 \pi}{6}=-\frac{\pi}{6} \quad \frac{\pi}{6} \quad\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ $\sin ?=-\frac{1}{2}$

D: $-1 \leq x \leq 1$

* $R:-\frac{\pi}{2} \leqslant y<\frac{\pi}{2}$

2 Find an Approximate Value of an Inverse Sine Function

EXAMPLE

Finding an Approximate Value of an Inverse Sine Function
Find an approximate value of:
(a) $\sin ^{-1} \frac{1}{3}$
(b) $\sin ^{-1}\left(-\frac{1}{4}\right)$
calculator

Express the answer in radians rounded to two decimal places.

$$
\text { a. } 34 \quad \text { b. }-.25
$$

3 Use Properties of Inverse Functions to Find Exact Values of Certain Composite Functions

Properties of Inverse Functions

$$
\begin{array}{rlrl}
f^{-1}(f(x)) & =\sin ^{-1}(\sin x)=x, & \text { where }-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\
f\left(f^{-1}(x)\right)=\sin \left(\sin ^{-1} x\right)=x, & \text { where }-1 \leq x \leq 1
\end{array}
$$

Find the exact value of each of the following composite functions:
(a) $\sin ^{-1}\left(\sin \frac{\pi}{8}\right)=\frac{\pi}{8}$
(b) $\sin ^{-1}\left(\sin \frac{5 \pi}{8}\right)=\frac{3 \pi}{8}$

EXAMPLE

Finding the Exact Value of Certain Composite Functions

Find the exact value, if any, of each composite function.
(a) $\sin \left(\sin ^{-1} 0.5\right)$
(b) $\sin \left(\sin ^{-1} 1.8\right)$
.5
does not exist

The Inverse Cosine Function

$$
-1 \leq y \leq 1
$$

$y=\cos x, 0 \leq x \leq \pi,-1 \leq y \leq 1$

$$
y=\cos ^{-1} x \quad \text { means } \quad x=\cos y
$$

where $-1 \leq x \leq 1$ and $0 \leq y \leq \pi$

$$
y=\cos ^{-1} x,-1 \leq x \leq 1,0 \leq y \leq \pi
$$

EXAMPLE

Finding the Exact Value of an Inverse Cosine Function
Find the exact value of: $\cos ^{-1} 0=\frac{\pi}{2}$

$$
\cos ?=0
$$

Find the exact value of: $\cos ^{-1}\left(-\frac{\sqrt{2}}{2}\right)=\frac{3 \pi}{4}$

Properties of Inverse Functions

$$
\begin{gathered}
f^{-1}(f(x))=\cos ^{-1}(\cos x)=x, \quad \text { where } 0 \leq x \leq \pi \\
f\left(f^{-1}(x)\right)=\cos \left(\cos ^{-1} x\right)=x, \quad \text { where }-1 \leq x \leq 1
\end{gathered}
$$

EXAMPLE

Using Properties of Inverse Functions to Find the Exact Value of Certain Composite Functions

Find the exact value of:
(a) $\cos ^{-1}\left[\cos \left(\frac{5 \pi}{6}\right)\right]=\frac{5 \pi}{6}$
(b) $\cos \left(\cos ^{-1} 0.2\right)=2$
(c) $\cos ^{-1}\left[\cos \left(\frac{5 \pi}{4}\right)\right]=\frac{3 \pi}{4}$
(d) $\cos \left(\cos ^{-1} 2\right)$ does not exist

The Inverse Tangent Function

$$
y=\tan ^{-1} x \quad \text { means } \quad x=\tan y
$$

where $-\infty<x<\infty$ and $-\frac{\pi}{2}<y<\frac{\pi}{2}$

EXAMPLE

Finding the Exact Value of an Inverse Tangent Function
Find the exact value of: $\tan ^{-1} 1=\frac{\pi}{4}$

$$
\tan ^{7}=1
$$

Find the exact value of: $\tan ^{-1}(-\sqrt{3})=-\frac{\pi}{3}$

$$
\tan ?=-\sqrt{3}
$$

Properties of Inverse Functions

$$
\begin{array}{ll}
f^{-1}(f(x))=\tan ^{-1}(\tan x)=x & \text { where }-\frac{\pi}{2}<x<\frac{\pi}{2} \\
f\left(f^{-1}(x)\right)=\tan \left(\tan ^{-1} x\right)=x & \text { where }-\infty<x<\infty
\end{array}
$$

