Section 6.3
 Properties of the Trigonometric Functions

4 Find the Values of the Trigonometric Functions Using Fundamental Identities

Reciprocal Identities

$$
\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}
$$

Quotient Identities

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
$$

EXAMPLE
Finding Exact Values Using Identities When Sine and Cosine Are Given
Given $\sin \theta=\frac{\sqrt{10}}{10}$ and $\cos \theta=\frac{3 \sqrt{10}}{10}$, find the value of each of the four remaining trigonometric functions of θ.

$$
\begin{gathered}
\frac{\sqrt{10}}{10} \cdot \frac{10}{3 \sqrt{10}}=\frac{1}{3}=\tan \theta \\
\frac{10}{\sqrt{10} \cdot \frac{\sqrt{10}}{\sqrt{10}}=\sqrt{10}=\csc \theta} \\
\frac{10}{3 \sqrt{10}} \cdot \frac{\sqrt{10}}{\sqrt{10}}=\frac{\sqrt{10}}{3}=\sec \theta \\
3=\cot \theta
\end{gathered}
$$

The equation of the unit circle is $x^{2}+y^{2}=1$

$$
\text { But } y=\sin \theta \text { and } x=\cos \theta \text {, so }
$$

$$
\notin \sin ^{2} \theta+\cos ^{2} \theta=1
$$

$$
\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+1=\frac{1}{\cos ^{2} \theta}
$$

$$
\$ \tan ^{2} \theta+1=\sec ^{2} \theta
$$

$$
\cot ^{2} \theta+1=\csc ^{2} \theta
$$

Fundamental Identities

$$
\begin{gathered}
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta} \\
\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta} \\
\sin ^{2} \theta+\cos ^{2} \theta=1 \quad \tan ^{2} \theta+1=\sec ^{2} \theta \quad \cot ^{2} \theta+1=\csc ^{2} \theta
\end{gathered}
$$

EXAMPLE
 Finding the Exact Value of a Trigonometric Expression Using Identities

Find the exact value of each expression. Do not use a calculator.
(a) $\frac{1}{\csc ^{2} 35^{\circ}}+\cos ^{2} 35^{\circ}$
(b) $\frac{\cos \frac{\pi}{3}}{\sin \frac{\pi}{3}}-\cot \frac{\pi}{3}$
$\sin ^{2} 35^{\circ}+\cos ^{2} 35^{\circ}=1$

$$
\cot \frac{\pi}{3}-\cot \frac{\pi}{3}=0
$$

5 Find the Exact Values of the Trigonometric Functions of an Angle Given One of the Functions and the Quadrant of the Angle

EXAMPLE Bowie

Solution 1 Using a Circle
Finding Exact Values Given One Value and the Sign of Another Given that $\sin \theta=\frac{2}{5}$ and $\cos \theta<0$, find the exact value of each of the remaining five trigonometric functions of θ.

$$
\begin{aligned}
2^{2}+x^{2} & =5^{2} \\
x^{2} & =21 \\
x & =\sqrt{21}
\end{aligned}
$$

$$
Q \|
$$

$$
\cos \theta=\frac{-\sqrt{21}}{5}
$$

$$
\tan \theta=\frac{2}{\sqrt{21}}=\frac{2 \sqrt{21}}{21}
$$

$$
\csc \theta=\frac{5}{2}
$$

$$
\sec \theta=-\frac{5}{\sqrt{21}}=-\frac{5 \sqrt{21}}{21}
$$

$$
\cot \theta=\frac{-\sqrt{21}}{2}
$$

Finding the Values of the Trigonometric Functions of θ When the Value of One Function Is Known and the Quadrant of θ Is Known

Given the value of one trigonometric function and the quadrant in which θ lies, the exact value of each of the remaining five trigonometric functions can be found in either of two ways.

Method 1 Using a Circle of Radius r

STEP 1: Draw a circle centered at the origin showing the location of the angle θ and the point $P=(x, y)$ that corresponds to θ. The radius of the circle that contains $P=(x, y)$ is $r=\sqrt{x^{2}+y^{2}}$.
Step 2: Assign a value to two of the three variables x, y, r based on the value of the given trigonometric function and the location of P.
STEP 3: Use the fact that P lies on the circle $x^{2}+y^{2}=r^{2}$ to find the value of the missing variable.
STEP 4: Apply the theorem on page 374 to find the values of the remaining trigonometric functions.

Method 2 Using Identities

Use appropriately selected identities to find the value of each remaining trigonometric function.

