
Section 6.2 Trigonometric Functions: Unit Circle Approach

5 Find the Exact Values of the Trigonometric Functions for Integer Multiples of $\frac{\pi}{6}=30^\circ$, $\frac{\pi}{4}=45^\circ$, and $\frac{\pi}{3}=60^\circ$

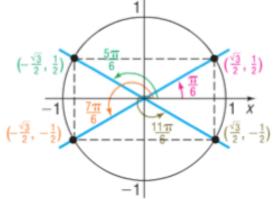
EXAMPLE

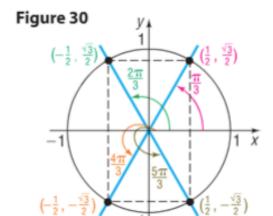
Finding Exact Values for Multiples of $\frac{\pi}{4} = 45^{\circ}$

Find the exact value of each expression.

(b)
$$\tan \frac{3\pi}{4}$$

(d)
$$\cos\left(-\frac{5\pi}{4}\right)$$
 (e) $\sin^2\left(-\frac{5\pi}{4}\right)$


Find the exact value of each expression.


(a)
$$\cos 135^{\circ}$$
 (b) $\tan \frac{3\pi}{4}$ (c) $\sin 225^{\circ}$ (d) $\cos \left(-\frac{5\pi}{4}\right)$ (e) $\sin \frac{9\pi}{4}$

Cos $135^{\circ} = -\frac{12}{2}$ sin $25^{\circ} = -\frac{12}{2}$

The use of symmetry also provides information about certain integer multiples of the angles $\frac{\pi}{6} = 30^{\circ}$ and $\frac{\pi}{3} = 60^{\circ}$. See Figures 29 and 30.

EXAMPLE Finding Exact Values for Multiples of
$$\frac{\pi}{6} = 30^{\circ} \text{ or } \frac{\pi}{3} = 60^{\circ}$$

Find: (a) $\cos 150^{\circ}$ (b) $\sin (-30^{\circ})$ (c) $\tan \frac{4\pi}{3}$ (d) $\sin \left(\frac{7\pi}{6}\right)$

Q2

X

 $(\frac{\sqrt{3}}{2}, \frac{1}{2})$
 $+$
 $\sin (-30)^{\circ} = -\frac{1}{2}(\frac{1}{2}, \frac{\sqrt{3}}{2})$

Sin $\frac{7\pi}{6} = -\frac{1}{2}$
 $\cos 150^{\circ} = -\frac{\sqrt{3}}{2}$
 $\tan \frac{4\pi}{3} = -\frac{1}{2}$
 $\tan \frac{4\pi}{3} = -\frac{1}{2}$

6 Use a Calculator to Approximate the Value of a Trigonometric Function

Your calculator has buttons for sin, cos, and tan so to find values of the remaining 3 trigonometric functions we use:

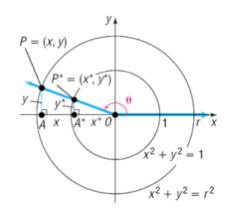
$$\sec \theta = \frac{1}{x} = \frac{1}{\cos \theta}$$

$$\csc \theta = \frac{1}{y} = \frac{1}{\sin \theta}$$

$$\cot \theta = \frac{x}{y} = \frac{1}{\frac{y}{x}} = \frac{1}{\tan \theta}$$

$$\cot \theta = \frac{x}{y} = \frac{1}{\frac{y}{x}} = \frac{1}{\tan \theta}$$

$$2nd \wedge \boxed{x^{-1}}$$


EXAMPLE

Using a Calculator to Approximate the Value of a Trigonometric Function

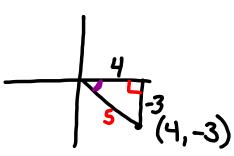
Use a calculator to find the approximate value of:

(b)
$$\csc 21^{\circ}$$
 (c) $\tan \frac{\pi}{12}$

7 Use a Circle of Radius r to Evaluate the Trigonometric Functions

$$\cos = \frac{x}{1}$$

$$\sin = \frac{y}{1}$$


Theorem

For an angle θ in standard position, let P = (x, y) be the point on the terminal side of θ that is also on the circle $x^2 + y^2 = r^2$. Then

$$\sin \theta = \frac{y}{r}$$
 $\cos \theta = \frac{x}{r}$ $\tan \theta = \frac{y}{x}, \quad x \neq 0$
 $\csc \theta = \frac{r}{y}, \quad y \neq 0$ $\sec \theta = \frac{r}{x}, \quad x \neq 0$ $\cot \theta = \frac{x}{y}, \quad y \neq 0$

Finding the Exact Values of the Six Trigonometric Functions

Find the exact value of each of the six trigonometric functions of a positive angle θ if (4, -3) is a point on its terminal side.

$$\sin \theta = \frac{-3}{5}$$

$$(S(\theta = -\frac{5}{3})$$

$$08\theta = \frac{4}{5}$$

$$Sec\theta = \frac{5}{4}$$

$$r^{2} = 4^{2} + (-3)^{3}$$