## Section 6.2

## Trigonometric Functions:

Unit Circle Approach

The Unit Circle



Let $t$ be a real number and let $P=(x, y)$ be the point on the unit circle that corresponds to $t$.

The sine function associates with $t$ the $y$-coordinate of $P$ and is denoted by

$$
\sin t=y
$$

The cosine function associates with $t$ the $x$-coordinate of $P$ and is denoted by

$$
\cos t=x
$$

$(x, y)$
cos, $\sin$

If $x \neq 0$, the tangent function associates with $t$ the ratio of the $y$-coordinate to the $x$-coordinate of $P$ and is denoted by

$$
\tan t=\frac{y}{x}
$$

Let $t$ be a real number and let $P=(x, y)$ be the point on the unit circle that corresponds to $t$.

If $y \neq 0$, the cosecant function is defined as
$\square$

If $x \neq 0$, the secant function is defined as
$\square$

If $y \neq 0$, the cotangent function is defined as

$$
\cot t=\frac{x}{y}
$$

1 Find the Exact Values of the Trigonometric Functions Using a Point on the Unit Circle

EXAMPLE Finding the Values of the Trigonometric Functions Using a Point on the Unit Circle
Find the values of $\sin t, \cos t, \tan t, \csc t, \sec t$, and $\cot t$ if $P=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ is the point on the unit circle that corresponds to the real number $t$.

$\csc t=\frac{2}{\sqrt{3}} \sqrt{3}=\frac{2 \sqrt{3}}{3}$
$\cos t=-\frac{1}{2}$ $\sec t=-2$

$$
\begin{aligned}
& \tan t=\frac{\sqrt{3}}{-\frac{1}{2}}=\frac{\sqrt{3}}{7} \cdot \frac{x}{1}=-\sqrt{3} \\
& \cot t=\frac{1}{\sqrt{3}} \cdot 5=-\frac{\sqrt{3}}{3}
\end{aligned}
$$

## DEFINITION

If $\theta=t$ radians, the six trigonometric functions of the angle $\boldsymbol{\theta}$ are defined as

$$
\begin{array}{lll}
\sin \theta=\sin t & \cos \theta=\cos t & \tan \theta=\tan t \\
\csc \theta=\csc t & \sec \theta=\sec t & \cot \theta=\cot t
\end{array}
$$

2 Find the Exact Values of the Trigonometric Functions
of Quadrantal Angles
EXAMPLE $\begin{aligned} & \text { Finding the Exact Values of the Six Trigonometric Functions } \\ & \text { of Quadrantal Angles }\end{aligned}$
Find the exact values of each of the six trigonometric functions of
(a) $\theta=0=0 \quad(1,0)$ (b) $\theta=\frac{\pi}{2}=90^{\circ}(0,1)$
$\sin 0=0$
$\sin \frac{\pi}{2}=1$
$\cos 0=1$
$\cos \frac{\pi}{2}=0$
$\tan 0=\frac{\circ}{1}=0$
$\csc 0=\frac{1}{0}=$ undefined
$\sec 0=1$
$\tan \frac{\pi}{2}=\frac{1}{0}=$ undefined
$\csc \frac{\pi}{2}=1$
$\cot 0=$ undefined
$\sec \frac{\pi}{2}=$ undefined
$\cot \frac{\pi}{2}=0$
(c) $\theta=\pi=180^{\circ}(-1,0)$
(d) $\theta=\frac{3 \pi}{2}=270^{\circ} \quad(0,-1)$
$\sin \pi=0$
$\sin \frac{3 \pi}{2}=-1$
$\cos \pi=-1$
$\cos \frac{3 \pi}{2}=0$
$\tan \pi=\frac{0}{-1}=0$
$\csc \pi=$ undefined
$\sec \pi=-1$
$\tan \frac{3 \pi}{2}=$ undefined
$\csc \frac{3 \pi}{2}=-1$
cot $\pi=$ undefined
$\sec \frac{3 \pi}{2}=$ undefined
cot $\frac{3 \pi}{2}=0$

| $\theta$ (Radians) | $\boldsymbol{\theta}$ (Degrees) | $\boldsymbol{\operatorname { s i n } \theta}$ | $\boldsymbol{\operatorname { c o s } \theta}$ | $\boldsymbol{\operatorname { t a n } \theta}$ | $\csc \theta$ | $\sec \theta$ | $\boldsymbol{\operatorname { c o t } \theta}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $0^{\circ}$ | 0 | 1 | 0 | Not defined | 1 | Not defined |
| $\frac{\pi}{2}$ | $90^{\circ}$ | 1 | 0 | Not defined | 1 | Not defined | 0 |
| $\pi$ | $180^{\circ}$ | 0 | -1 | 0 | Not defined | -1 | Not defined |
| $\frac{3 \pi}{2}$ | $270^{\circ}$ | -1 | 0 | Not defined | -1 | Not defined | 0 |

$\square$
EXAMPLE
Finding Exact Values of the Trigonometric Functions of Angles That Are Integer Multiples of Quadrantal Angles

Find the exact value of:
(a) $\sin (3 \pi)$

(b) $\cos \left(-270^{\circ}\right)$ $\sin 3 \pi=0$ $\cos \left(-270^{\circ}\right)=0$

