Section 6.2 Trigonometric Functions: Unit Circle Approach

The Unit Circle

Let t be a real number and let P = (x, y) be the point on the unit circle that corresponds to t.

The **sine function** associates with t the y-coordinate of P and is denoted by

$$\sin t = y$$

The **cosine function** associates with t the x-coordinate of P and is denoted by

$$\cos t = x$$

(x,y)

If $x \neq 0$, the **tangent function** associates with t the ratio of the y-coordinate to the x-coordinate of P and is denoted by

$$\tan t = \frac{y}{x}$$

Let t be a real number and let P = (x, y) be the point on the unit circle that corresponds to t.

If $y \neq 0$, the **cosecant function** is defined as

$$\csc t = \frac{1}{y}$$

21.1

If $x \neq 0$, the **secant function** is defined as

$$\sec t = \frac{1}{x}$$

If $y \neq 0$, the **cotangent function** is defined as

$$\cot t = \frac{x}{y}$$

1 Find the Exact Values of the Trigonometric Functions Using a Point on the Unit Circle

Finding the Values of the Trigonometric Functions Using a Point on the Unit Circle

Find the values of sin t, cos t, tan t, csc t, sec t, and cot t if $P = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ is the point on the unit circle that corresponds to the real number t.

$$sint = \frac{3}{2}$$
 $csct = \frac{2}{3}is = \frac{2}{3}is$
 $csct = -\frac{1}{2}is = \frac{2}{3}is$
 $sect = -2$
 $tant = \frac{5}{-\frac{1}{2}} = \frac{7}{2}is = -\frac{1}{3}is$
 $out = -\frac{1}{3}is = -\frac{1}{3}is$

DEFINITION

If $\theta = t$ radians, the six **trigonometric functions of the angle** θ are defined as

$$\sin \theta = \sin t$$
 $\cos \theta = \cos t$ $\tan \theta = \tan t$
 $\csc \theta = \csc t$ $\sec \theta = \sec t$ $\cot \theta = \cot t$

2 Find the Exact Values of the Trigonometric Functions of Quadrantal Angles

EXAMPLE

Finding the Exact Values of the Six Trigonometric Functions of Quadrantal Angles

Find the exact values of each of the six trigonometric functions of

(a)
$$\theta = 0 = 0^{\circ}$$
 (1,0)

$$sin 0 = 0$$

$$\cos 0 = 1$$

(c)
$$\theta = \pi = 180^{\circ} \left(-1, 0 \right)$$

(b)
$$\theta = \frac{\pi}{2} = 90^{\circ}$$
 (0,1)

$$\cos \frac{\pi}{2} = 0$$

(d)
$$\theta = \frac{3\pi}{2} = 270^{\circ}$$
 (O₁-1)

θ (Radians)	θ (Degrees)	$\sin\theta$	$\cos \theta$	an heta	$\csc \theta$	$\sec\theta$	$\cot \theta$
0	0°	0	1	0	Not defined	1	Not defined
$\frac{\pi}{2}$	90°	1	0	Not defined	1	Not defined	0
π	180°	0	-1	0	Not defined	-1	Not defined
$\frac{3\pi}{2}$	270°	-1	0	Not defined	-1	Not defined	0

EXAMPLE

Finding Exact Values of the Trigonometric Functions of Angles That Are Integer Multiples of Quadrantal Angles

Find the exact value of:

(a)
$$\sin(3\pi)$$

(b)
$$\cos(-270^{\circ})$$