
Chapter 6 Trigonometric Functions

6.1 Angles and Their Measures Day 2

Radians

2 Find the Length of an Arc of a Circle

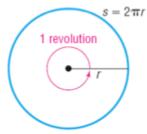
THEOREM

Arc Length

For a circle of radius r, a central angle of θ radians subtends an arc whose length s is

$$s = r\theta$$

EXAMPLE Finding the Length of an Arc of a Circle


Find the length of the arc of a circle of radius 4 meters subtended by a central angle of 0.5 radian.

$$S=r\theta$$

$$S=4(.5)$$

$$S=2 m$$

3 Convert from Degrees to Radians and from Radians to Degrees

1 revolution = 2π radians

JU

4.76

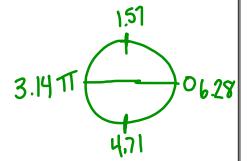
$$180^{\circ} = \pi \text{ radians}$$

1 degree =
$$\frac{\pi}{180}$$
 radian 1 radian = $\frac{180}{\pi}$ degrees

EXAMPLE Converting from Degrees to Radians

Convert each angle in degrees to radians.

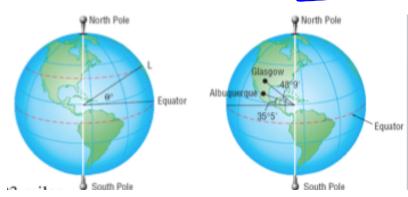
(c)
$$-60^{\circ}$$


1.82

EXAMPLE Converting from Degrees to Radians

Convert each angle in radians to degrees.

- (a) $\frac{\pi}{3}$ radian (b) $-\frac{\pi}{2}$ radian (c) $\frac{5\pi}{6}$ radians (d) 5 radians


286.48°

Degrees	0°	30°	45°	60°	90°	120°	135°	150°	180°
Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
Degrees		210°	225°	240°	270°	300°	315°	330°	360°
Radians		$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π

EXAMPLE Finding the Distance between Two Cities

See Figure 13(a). The latitude of a location L is the angle formed by a ray drawn from the center of Earth to the Equator and a ray drawn from the center of Earth to L. See Figure 13(b). Glasgow, Montana, is due north of Albuquerque, New Mexico. Find the distance between Glasgow (48°9′ north latitude) and Albuquerque (35°5′ north latitude). Assume that the radius of Earth is 3960 miles.

 $S = r\theta$ S = 3960(.2281) S = 903.3miles

48°9′ 48+9(65) 48.15°. ± 180° 35°5′ 35+5(齿) 35.08°. 正版

.8404 - .6123 = 2281 = ⊖