Chapter 6 Trigonometric Functions

6.1 Angles and Their Measures

Lowercase Greek letters are used to denote angle

(a) θ lies in quadrant II

(b) θ lies in quadrant IV

(c) θ is a quadrantal angle

We measure angles by determining the amount of rotation needed for the initial side to become coincident with the terminal side. also called $\begin{gathered}\text { coterminal }\end{gathered}$

The two commonly used measures for angles are degrees and radians. (We will be working with degrees first.)

(a) 1 revolution
counterclockwise, 360°

Vertex Initial side
(b) right angle, $\frac{1}{4}$ revolution
counter-clockwise, 90°

Terminal side Vertex Initial side
(c) straight angle, $\frac{1}{2}$ revolution counter-clockwise, 180°

EXAMPLE Drawing an Angle

Draw each angle.
(a) 45°
(b) -90°
(c) 225°
(d) 405°
a. \xrightarrow{C}
b.

c.

1 Convert between Decimals and Degrees, Minutes, Seconds Measures for Angles

1 counterclockwise revolution $=360^{\circ}$

$$
1^{\circ}=60^{\prime} \quad 1^{\prime}=60^{\prime \prime}
$$

EXAMPLE
Converting between Degrees, Minutes, Seconds, and Decimal Forms
(a) Convert $40^{\circ} 12^{\prime} 5^{\prime \prime}$ to a decimal in degrees. Round the answer to four decimal places.
(b) Convert 78.562° to the $\mathrm{D}^{\circ} \mathrm{M}^{\prime} \mathrm{S}^{\prime \prime}$ form. Round the answer to the nearest second.
a. $40+12\left(\frac{1}{60}\right)+5\left(\frac{1}{60}\right)\left(\frac{1}{60}\right)$
$40+.2+.0014$
40.2014°
b. $\begin{aligned} & 78^{\circ}+.562(60) \\ & 78^{\circ}+33.72\end{aligned}$

$$
\begin{aligned}
& 78^{\circ}+33^{\prime}+.72(60) \\
& 78^{\circ}+33^{\prime}+43.2^{\prime \prime} \\
& 78^{\circ} 33^{\prime} 43^{\prime \prime}
\end{aligned}
$$

August 21, 2017

