

Content Standard Extends G.CO.10 Prove theorems about triangles . .

Objective To use inequalities involving angles and sides of triangles

Essential Understanding The angles and sides of a triangle have special relationships that involve inequalities.

Property Comparison Property of Inequality

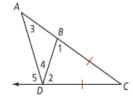
If a = b + c and c > 0, then a > b.

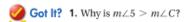
Corollary Corollary to the Triangle Exterior Angle Theorem

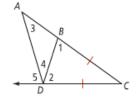
Corollary

The measure of an exterior angle of a triangle is greater than the measure of each of its remote interior angles.

∠1 is an exterior angle

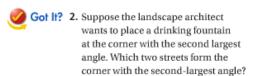

Then . . .

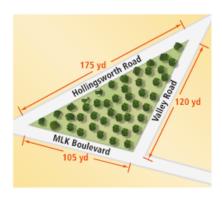

 $m \angle 1 > m \angle 2$ and $m \angle 1 > m \angle 3$

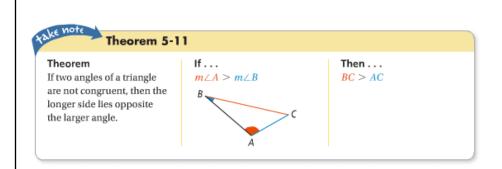


Problem 1 Applying the Corollary

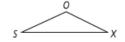
Use the figure at the right. Why is $m \angle 2 > m \angle 3$?







Problem 2 Using Theorem 5-10


A town park is triangular. A landscape architect wants to place a bench at the corner with the largest angle. Which two streets form the corner with the largest angle?

Got It? 3. Reasoning In the figure at the right, $m \angle S = 24$ and $m \angle O = 130$. Which side of $\triangle SOX$ is the shortest side? Explain your reasoning.



Theorem 5-12 Triangle Inequality Theorem

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

$$XY + YZ > XZ$$
 $YZ + XZ > XY$ $XZ + XY > YZ$

You will prove Theorem 5-12 in Exercise 45.

Got It? 4. Can a triangle have sides with the given lengths? Explain.

a. 2 m, 6 m, and 9 m

b. 4 yd, 6 yd, and 9 yd

Got It? 5. A triangle has side lengths of 4 in. and 7 in. What is the range of possible lengths for the third side?	