5-4 Medians and Altitudes
 Content Standards
 G.C0. 10 Prove theorems about triangles the medians of a triangle meet at a point. Also G.SRT. 5

Objective To identify properties of medians and altitudes of a triangle
medians. A median of a triangle is a segment whose endpoints are a vertex and the midpoint of the opposite side.

Essential Understanding A triangle's three medians are
 always concurrent.

In a triangle, the point of concurrency of the medians is the centroid of the triangle. The point is also called the center of gravity of a triangle because it is the point where a triangular shape will balance. For any triangle, the centroid is always inside the triangle.

Theorem 5-8 Concurrency of Medians Theorem

The medians of a triangle are concurrent at a point that is two thirds the distance from each vertex to the midpoint of the opposite side.
$D C=\frac{2}{3} D J$
$E C=\frac{2}{3} E G$
$F C=\frac{2}{3} F H$

You will prove Thearem 5-8 in Lessan 6-9.

Got It? 1. a. In the diagram for Problem $1, Z A=9$. What is the length of $\overline{Z C}$?

An altitude of a triangle is the perpendicular segment from a vertex of the triangle to the line containing the opposite side. An altitude of a triangle can be inside or outside the triangle, or it can be a side of the triangle.

Got It? 2. For $\triangle A B C$, is each segment a median, an altitude, or neither? Explain.
a. $\overline{A D}$
b. $\overline{E G}$
c. $\overline{C F}$

Theorem 5-9 Concurrency of Altitudes Theorem

The lines that contain the altitudes of a triangle are concurrent.

The lines that contain the altitudes of a triangle are concurrent at the orthocenter of the triangle. The orthocenter of a triangle can be inside, on, or outside the triangle.

