

Perpendicular and Angle Bisectors

Content Standards

G.CO.9 Prove theorems about lines and angles . . . points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.

G.SRT.5 Use congruence . . . criteria to solve problems and prove relationships in geometric figures.

Objective To use properties of perpendicular bisectors and angle bisectors

A point is equidistant from two objects if it is the same distance from the objects.

Theorem 5-2 Perpendicular Bisector Theorem

Theorem

If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

 $\overrightarrow{PM} \perp \overline{AB}$ and MA = MB

Then . . .

You will prove Theorem 5-2 in Exercise 32.

Theorem 5-3 Converse of the Perpendicular Bisector Theorem

Theorem

If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.

PA = PB

 $\overrightarrow{PM} \perp \overline{AB}$ and MA = MB

You will prove Theorem 5-3 in Exercise 33.

Got It? 1. What is the length of \overline{QR} ?

Got It? 2. a. Suppose the director wants the T-shirt stand to be equidistant from the paddle boats and the Spaceship Shoot. What are the possible locations?

The distance from a point to a line is the length of the perpendicular segment from the point to the line. This distance line. Iso the length of the shortest segment from the point to the

Theorem 5-4 Angle Bisector Theorem

Theorem

If a point is on the bisector of an angle, then the point is equidistant from the sides of the angle.

$$\overrightarrow{QS}$$
 bisects $\angle PQR$, $\overrightarrow{SP} \perp \overrightarrow{QP}$, and $\overrightarrow{SR} \perp \overrightarrow{QR}$

Then . . . SP = SR

You will prove Theorem 5-4 in Exercise 34.

Theorem 5-5 Converse of the Angle Bisector Theorem

Theorem

If a point in the interior of an angle is equidistant from the sides of the angle, then the point is on the angle bisector.

$$\overrightarrow{SP} \perp \overrightarrow{QP}, \overrightarrow{SR} \perp \overrightarrow{QR},$$

and $SP = SR$

 \overrightarrow{QS} bisects $\angle PQR$

You will prove Theorem 5-5 in Exercise 35.

Got It? 3. What is the length of \overline{FB} ?

