5-2

Perpendicular and Angle Bisectors

Content Standards

G.C0. 9 Prove theorems about lines and angles points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
G.SRT. 5 Use congruence . . . criteria to solve problems and prove relationships in geometric figures.

Objective To use properties of perpendicular bisectors and angle bisectors

A point is equidistant from two objects if it is the same distance from the objects.

Theorem 5-2 Perpendicular Bisector Theorem

Theorem
If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

If...
$\overleftrightarrow{P M} \perp \overline{A B}$ and $M A=M B$

Then...
$P A=P B$

You will prove Theorem 5-2 in Exercise 32.

Theorem 5-3 Converse of the Perpendicular Bisector Theorem

Theorem

If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.

If...
$P A=P B$

Then...
$\overleftrightarrow{P M} \perp \stackrel{\rightharpoonup}{A B}$ and $M A=M B$

You will prove Theorem 5-3 in Exercise 33.

Got It? 1. What is the length of $\overline{Q R}$?

Got It? 2. a. Suppose the director wants the T-shirt stand to be equidistant from the paddle boats and the Spaceship Shoot. What are the possible locations?

The distance from a point to a line is the length of the perpendicular segment from the point to the line. This distance line. Iso the length of the shortest segment from the point to the

Theorem 5-4 Angle Bisector Theorem

Theorem
If a point is on the bisector of an angle, then the point is equidistant from the sides of the angle.

If ...
$\overrightarrow{Q S}$ bisects $\angle P Q R, \overrightarrow{S P} \perp \overrightarrow{Q P}$,
Then...
$S P=S R$
and $\overline{S R} \perp \overrightarrow{Q R}$

You will prove Thearem 5-4 in Exercise 34.

Theorem 5-5 Converse of the Angle Bisector Theorem

Theorem

If a point in the interior of an angle is equidistant from the sides of the angle, then the point is on the angle bisector.

If. . .
$\overline{S P} \perp \overrightarrow{Q P}, \overline{S R} \perp \overrightarrow{Q R}$, and $S P=S R$

Then...
$\overrightarrow{Q S}$ bisects $\angle P Q R$

You will prove Theorem 5-5 in Exercise 35.

Got It? 3. What is the length of $\overline{F B}$?

