3-5
 Parallel Lines and Triangles

Objectives To use parallel lines to prove a theorem about triangles To find measures of angles of triangles

Postulate 3-2 Parallel Postulate

Through a point not on a line, there is one and only one line parallel to the given line.

There is exactly one line through P parallel to ℓ.

Theorem 3-11 Triangle Angle-Sum Theorem

The sum of the measures of the angles of a triangle is 180 .

The proof of the Triangle Angle-Sum Theorem requires an auxiliary line. An auxiliary line is a line that you add to a diagram to help explain relationships in proofs. The red line in the diagram below is an auxiliary line.

When you know the measures of two angles of a triangle, you can use the Triangle Angle-Sum Theorem to find the measure of the third angle.

Example 1: Find the values of the variables.

An exterior angle of a polygon is an angle formed by a side and an extension of an adjacent side. For each exterior angle of a triangle, the two nonadjacent interior angles are its remote interior angles. In each triangle below, $\angle 1$ is an exterior angle and $\angle 2$ and $\angle 3$ are its remote interior angles.

Theorem 3-12 Triangle Exterior Angle Theorem

The measure of each exterior angle of a triangle equals the sum of the measures of its two remote interior angles.

$$
m \angle 1=m \angle 2+m \angle 3
$$

Example 2: Find the measures of the labeled angles.

Lesson Check

Do you know HOW?

Find the measure of the third angle of a triangle given the measures of two angles.

1. 34 and 88
2. 45 and 90
3. 10 and 102
4. x and 50

In a triangle, $\angle 1$ is an exterior angle and $\angle 2$ and $\angle 3$ are its remote interior angles. Find the missing angle measure.
5. $m \angle 2=24$ and $m \angle 3=106$
6. $m \angle 1=70$ and $m \angle 2=32$

