3-3 Proving Lines Parallel Content Standard Extends G.CO.9 Prove theorems about lines and angles. Theorems include: . . . when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent

Objective To determine whether two lines are parallel

Essential Understanding You can use certain angle pairs to decide whether two lines are parallel.

note

Theorem 3-5 Converse of the Alternate Interior Angles Theorem
Theorem
If two lines and a transversal form alternate interior angles that are congruent, then the two lines are parallel.

$$
\angle 4 \equiv \angle 6
$$

Theorem 3-6 Converse of the Same-Side Interior Angles Postulate

Theorem

If two lines and a transversal form sameside interior angles that are supplementary, then the two lines are parallel.

If...
$m \angle 3+m \angle 6=180$

Then...
$\ell \| m$

Theorem 3-7 Converse of the Alternate Exterior Angles Theorem

Theorem

If two lines and a
transversal form alternate exterior angles that are congruent, then the two lines are parallel.

If...
$\angle 1 \equiv \angle 7$

Then...
$\ell \| m$

Then...
$\ell \| m$

You know two forms of proof-paragraph and two-column. In a third form, called flow proof, arrows show the logical connections between the statements. Reasons are written below the statements.

Problem 2 Writing a Flow Proof of Theorem 3-7

Given: $\angle 1 \equiv \angle 7$
Prove: $\ell \| m$

Know

- $\angle 1=\angle 7$

From the diagram you know

- $\angle 1$ and $\angle 3$ are vertical
- $\angle 5$ and $\angle 7$ are vertical
- $\angle 1$ and $\angle 5$ are corresponding
- $\angle 3$ and $\angle 7$ are corresponding

Need
One pair of corresponding angles congruent to prove $\ell \| m$

Plan
Use a pair of congruent vertical angles to relate either $\angle 1$ or $\angle 7$ to its corresponding angle.
$\angle 1 \equiv \angle 7$
Given
$\angle 3 \equiv \angle 1$
Vertical \angle are \simeq.
$\angle 3 \cong \angle 7$ $\ell \| m$
Transitive If corresp. \triangle are \cong, Property of $\cong \quad$ then the lines are $\|$.

Lesson Check

Do you know HOW?

State the theorem or postulate that proves $a \| b$.
1.

2.

3. What is the value of y for which $a \| b$ in Exercise 2?

Do you UNDERSTAND?

4. Explain how you know when to use the Alternate Interior Angles Theorem and when to use the Converse of the Alternate Interior Angles Theorem.
5. Compare and Contrast How are flow proofs and two-column proofs alike? How are they different?
6. Error Analysis A classmate says that $\overleftrightarrow{A B} \| \overleftrightarrow{D C}$ based on the diagram at the right. Explain your classmate's error.

