5-4 Medians and Altitudes

Content Standards G.C0. 10 Prove theorems about triangles . . the medians of a triangle meet at a point.
Also G.SRT. 5

Objective To identify properties of medians and altitudes of a triangle
medians. A median of a triangle is a segment whose endpoints are a vertex and the midpoint of the opposite side.

Essential Understanding A triangle's three medians are always concurrent.

In a triangle, the point of concurrency of the medians is the centroid of the triangle. The point is also called the center of gravity of a triangle because it is the point where a triangular shape will balance. For any triangle, the centroid is always inside the triangle.

Theorem 5-8 Concurrency of Medians Theorem
The medians of a triangle are concurrent at a point that is two thirds the distance from each vertex to the midpoint of the opposite side.

$$
D C=\frac{2}{3} D J
$$

$$
E C=\frac{2}{3} E G
$$

$$
F C=\frac{2}{3} F H
$$

You will prove Theorem 5-8 in Lesson 6-9.
side $=\frac{1}{3}$ whole -4
Got It? 1. a. In the diagram for Problem $1, Z A=9$. What is the length of $\overline{Z C}$?

$$
Z A=\text { vertex }=9
$$

$Z C=$ whole $=$? $=x$

$$
\begin{aligned}
& \frac{3}{2} .9=\frac{2}{3} x \\
& \frac{27}{2}=x \\
& 13.5=x
\end{aligned}
$$

An altitude of a triangle is the perpendicular segment from a vertex of the triangle to the line containing the opposite side. An altitude of a triangle can be inside or outside the triangle, or it can be a side of the triangle.
 $a b$
Got lt? 2. For $\triangle A B C$, is each segment a median, an altitude, or neither? Explain.
a. $\overline{A D}$
b. $\overline{E G}$
c. $\overline{C F}$
a. median starts evertex goes to middle of opp. side b. neither
G is not a vertex
C. altitude
starts e vertex goes to opp. side e $90^{\circ} \angle$

Theorem 5-9 Concurrency of Altitudes Theorem

The lines that contain the altitudes of a triangle are concurrent.

The lines that contain the altitudes of a triangle are concurrent at the orthocenter of the triangle. The orthocenter of a triangle can be inside, on, or outside the triangle.

