5-3 Bisectors in Triangles

4
Objective
To identify properties of perpendicular bisectors and angle bisectors

In the Solve It, the three lines you drew intersect at one point, the center of the circle. When three or more lines intersect at one point, they are concurrent. The point at which they intersect is the point of concurrency.

The point of concurrency of the perpendicular bisectors of a triangle is called the circumcenter of the triangle.

Since the circumcenter is equidistant from the vertices, you can use the circumcenter as the center of the circle that contains each vertex of the triangle. You say the circle is circumscribed about the triangle.

The circumcenter of a triangle can be inside, on, or outside a triangle.

Right triangle

Obtuse triangle

Draw the perpendicular bisectors of the sides of the triangle.
They are concurrent at a point - circumcenter
The distance from the circumcenter to each vertex of the triangle is equidistant.

The circle is circumscribed (outside) about the triangle.

Theorem 5-7 Concurrency of Angle Bisectors Theorem

Theorem
The bisectors of the angles of a triangle are concurrent at a point equidistant from the sides of the triangle.

Diagram Symbols

Angle bisectors $\overline{A P}, \overline{B P}$, and $\overline{C P}$ are concurrent at P.

$$
P X=P Y=P Z
$$

You will prove Theorem 5-7 in Exercise 24.

The point of concurrency of the angle bisectors of a triangle is called the incenter of the triangle. For any triangle, the incenter is always inside the triangle. In the diagram, points X, Y, and Z are equidistant from P, the incenter of $\triangle A B C . P$ is the center of the circle that is inscribed in the triangle.

Draw the angle bisectors of the triangle.
They are concurrent at a point - incenter
The distance from the incenter to each side of the triangle (perpendicular) is equidistant.

The circle is inscribed (inside) in the triangle.

Name

$$
5.3
$$

$$
\begin{gathered}
\text { pg. } 304-305 \# 2,3,14-18 \\
\\
\text { Notes 5. } 5.4 \quad 33-36 \\
33-29
\end{gathered}
$$

