5-2
 Perpendicular and Angle Bisectors

Content Standards
G.C0. 9 Prove theorems about lines and angles points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
G.SRT. 5 Use congruence . . . criteria to solve problems and prove relationships in geometric figures.

Objective To use properties of perpendicular bisectors and angle bisectors

A point is equidistant from two objects if it is the same distance from the objects.

Theorem 5-3 Converse of the Perpendicular Bisector Theorem

Theorem

If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.

If...
$P A=P B$

$\xrightarrow{\text { Then ... }}$
$\overleftrightarrow{P M} \perp \overrightarrow{A B}$ and $M A=M B$

You will prove Theorem 5-3 in Exercise 33.

Got It? 1. What is the length of $\overline{Q R}$?

$$
3 n-1=5 n-7
$$

$$
-1=2 n-7
$$

$$
6=2 n
$$

$$
3=n
$$

QR $=5(3)-7$
$Q R=8$

Got It? 2. a. Suppose the director wants the T-shirt stand to be equidistant from the paddle boats and the Spaceship Shoot. What are the possible locations?

The t-shirt stand should be placed somewhere on the perpendicular bisector of the segment between the paddle boats and the spaceship shoot.

The distance from a point to a line is the length of the perpendicular segment from the point to the line. This distance is also the length of the shortest segment from the point to the

Theorem 5-4 Angle Bisector Theorem

Theorem
If a point is on the bisector of an angle, then the point is equidistant from the sides of the angle.

If . . .
$\overrightarrow{Q S}$ bisects $\angle P Q R, \overrightarrow{S P} \perp \overrightarrow{Q P}$
Then... $S P=S R$

You will prove Theorem 5-4 in Exercise 34

Theorem 5-5 Converse of the Angle Bisector Theorem

Theorem
If a point in the interior of an angle is equidistant from the sides of the angle, then the point is on the angle bisector.

If...
$\overrightarrow{S P} \perp \overrightarrow{Q P}, \overrightarrow{S R} \perp \overrightarrow{Q R}$, and $S P=S R$

Then...
$\overrightarrow{Q S}$ bisects $\angle P Q R$

You will prove Theorem 5-5 in Exercise 35

Got It? 3. What is the length of $\overline{F B}$?
$6 x+3=4 x+9$
$2 x+3=9$

$F B=6(3)+3$
$2 x=6$
$\mathrm{FB}=21$
$x=3$

Name
5.2
pg. $296-297 \#-6-10$

$$
12-22
$$

$$
28
$$

Notes $5.3 \quad 39-42$

