

Perpendicular and Angle Bisectors

@ Content Standards

G.CO.9 Prove theorems about lines and angles . . . points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.

G.SRT.5 Use congruence . . . criteria to solve problems and prove relationships in geometric figures.

Objective To use properties of perpendicular bisectors and angle bisectors

A point is equidistant from two objects if it is the same distance from the objects.

ake note

Theorem 5-2 Perpendicular Bisector Theorem

Theorem

If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment. $\overrightarrow{PM} \perp \overline{AB}$ and MA = MB

Then . . .

You will prove Theorem 5-2 in Exercise 32.

Theorem 5-3 Converse of the Perpendicular Bisector Theorem

Theorem

If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment. PA = PB

Then . . .

$$\overrightarrow{PM} \perp \overrightarrow{AB}$$
 and $MA = MB$

You will prove Theorem 5-3 in Exercise 33.

Got It? 1. What is the length of \overline{QR} ?

$$3n - 1 = 5n - 7$$

$$-1 = 2n - 7$$

$$6 = 2n$$

$$3 = n$$

$$QR = 5(3) - 7$$

$$QR = 8$$

Got It? 2. a. Suppose the director wants the T-shirt stand to be equidistant from the paddle boats and the Spaceship Shoot. What are the possible locations?

The t-shirt stand should be placed somewhere on the perpendicular bisector of the segment between the paddle boats and the spaceship shoot.

The distance from a point to a line is the length of the perpendicular segment from the point to the line. This distance is also the length of the shortest segment from the point to the

take note

Theorem 5-4 Angle Bisector Theorem

Theorem

If a point is on the bisector of an angle, then the point is equidistant from the sides of the angle.

Then . . . SP = SR

You will prove Theorem 5-4 in Exercise 34.

Theorem 5-5 Converse of the Angle Bisector Theorem

Theorem

If a point in the interior of an angle is equidistant from the sides of the angle, then the point is on the angle bisector.

$$\begin{array}{l} \textbf{If} \dots \\ \overrightarrow{SP} \perp \overrightarrow{QP}, \overrightarrow{SR} \perp \overrightarrow{QR}, \\ \textbf{and} \ SP = SR \end{array}$$

Then . . . \overrightarrow{QS} bisects $\angle PQR$

You will prove Theorem 5-5 in Exercise 35.

Got It? 3. What is the length of \overline{FB} ?

$$6x + 3 = 4x + 9$$

$$2x + 3 = 9$$

$$2x = 6$$

$$x = 3$$

$$FB = 6(3) + 3$$

Name
5.2
pg. 296-297 # 6-10
12-22
28
Notes 5.3
39-42