5-1 Midsegments of Triangles

Content Standards G.C0. 10 Prove theorems about triangles the segment joining the midpoints of two sides of a triangle is parallel to the third side and half the length Also G.C0. 12 and G.SRT. 5

Objective To use properties of midsegments to solve problems

A midsegment of a triangle is a segment connecting the midpoints of two sides of the triangle.

Theorem 5-1 Triangle Midsegment Theorem

Theorem
If a segment joins the midpoints of two sides of a triangle, then the segment is parallel to the third side and is half as long.

If...
D is the midpoint of $\overline{C A}$ and E is the midpoint of $\overline{C B}$

Then...
$\overline{D E} \| \overline{A B}$ and
$D E=\frac{1}{2} A B$

You will prove Theorem 5-1 in Lesson 6-9.
$\overline{A B} \| \overline{x z} \quad A B=\frac{1}{2} x z$

Got It? 1. a. In $\triangle X Y Z, A$ is the midpoint of $\overline{X Y}, B$ is the midpoint of $\overline{Y Z}$, and C is the midpoint of $\overline{Z X}$. What are the three pairs of parallel segments?

b. Reasoning What is $m \angle V U O$ in the figure at the right? Explain your reasoning.

$m \angle V V O=65^{\circ}$
 Corresponding <S Thm

 $\overline{B C} \| \overline{X Y} \quad B C=\frac{1}{2} \times Y$ $\overline{\pi C} \| F A C=\frac{1}{2} 2$Got It? 2. In the figure at the right, $A D=6$ and $D E=7.5$. What are the lengths of $\overline{D C}, \overline{A C}, \overline{E F}$, and $\overline{A B}$? $\overline{D C}=6$

$\overline{A C}=6+6=12$
$\overline{E F}=\frac{12}{2}=6$
$\overline{A B}=7.5+7.5=15$

Got It? 3. $\overline{C D}$ is a bridge being built over a lake, as shown in the figure at the right. What is the length of the bridge?

$$
\begin{aligned}
\overline{C D} & =\frac{2640}{2} \\
& =1320 \mathrm{ft}
\end{aligned}
$$

Name
5.1
pg. $288-290$ \# $15-27,31-44$
Notes 5.2

