

Content Standards

G.CO.10 Prove theorems about triangles . . . the segment joining the midpoints of two sides of a triangle is parallel to the third side and half the length . . .

Also G.CO.12 and G.SRT.5

Objective To use properties of midsegments to solve problems

A midsegment of a triangle is a segment connecting the midpoints of two sides of the triangle.

ake note

Theorem 5-1 Triangle Midsegment Theorem

Theorem

If a segment joins the midpoints of two sides of a triangle, then the segment is parallel to the third side and is half as long.

If . . . D is the midpoint of \overline{CA} and E is the midpoint of \overline{CB}

Then . . .

 $\overline{DE} \parallel \overline{AB}$ and $\overline{DE} = \frac{1}{2}AB$

You will prove Theorem 5-1 in Lesson 6-9.

b. Reasoning What is m∠VUO in the figure at the right? Explain your reasoning.

m2VVO=65° Corresponding 2s Thm

Got It? 2. In the figure at the right, AD = 6 and DE = 7.5. What are the lengths of \overline{DC} , \overline{AC} , \overline{EF} , and \overline{AB} ?

Got It? 3. \overline{CD} is a bridge being built over a lake, as shown in the figure at the right.

What is the length of the bridge?

$$\overline{CD} = \frac{2640}{2}$$
= 1320 ft

Name 5.1 pg.288-290 # 15-27, 31-44

Notes 5.2