3-8 Slopes of Parallel and Perpendicular Lines

 G.GPE. 5 Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems.Objective To relate slope to parallel and perpendicular lines

Key Concept Slopes of Parallel Lines

- If two nonvertical lines are parallel, then their slopes are equal.
- If the slopes of two distinct nonvertical lines are equal, then the lines are parallel.
- Any two vertical lines or horizontal lines are parallel.

1. Line ℓ_{3} contains $A(-13,6)$ and $B(-1,2)$. Line ℓ_{4} contains $C(3,6)$ and $D(6,7)$. Are ℓ_{3} and ℓ_{4} parallel? Explain.

$$
\begin{aligned}
& l_{3}=\frac{6-2}{-13-(-1)}-\frac{4}{-12}=-\frac{1}{3} \\
& l_{4}=\frac{6-7}{3-6}=\frac{-1}{-3}=\frac{1}{3}
\end{aligned}
$$

2. What is an equation of the line parallel to $y=-x-7$ that contains $(-5,3)$?

$$
\begin{array}{ll}
m=-1 \quad \mid l & m=-1 \\
& (-5,3) \\
& y-3=-(x+5)
\end{array}
$$

3. Line ℓ_{3} contains $A(2,7)$ and $B(3,-1)$. Line ℓ_{4} contains $C(-2,6)$ and $D(8,7)$. Are ℓ_{3} and ℓ_{4} perpendicular? Explain.

$$
l_{4}=\frac{6-7}{-2-8}=\frac{-1}{-10}=\frac{1}{10}
$$

4. What is an equation of the line perpendicular to $y=-3 x-5$ that contains $(-3,7)$?

$$
\begin{aligned}
& m=-\frac{3}{1} \perp m=\frac{1}{3} \\
& (-3,7) \\
& y-7=\frac{1}{3}(x+3)
\end{aligned}
$$

Name
3.8
$\begin{array}{rl}p g .201-203 \# & 8-26 \text { even } \\ & 30-38\end{array}$

$$
48-52
$$

