3-5
 Parallel Lines and Triangles

G.C0. 10 Prove theorems about triangles measures of interior angles of a triangle sum to 180°.
Objectives To use parallel lines to prove a theorem about triangles To find measures of angles of triangles

Postulate 3-2 Parallel Postulate

Through a point not on a line, there is one and only one line parallel to the given line.

There is exactly one line through P parallel to ℓ.

Theorem 3-11 Triangle Angle-Sum Theorem

The sum of the measures of the angles of a triangle is 180 .

The proof of the Triangle Angle-Sum Theorem requires an auxiliary line. An auxiliary line is a line that you add to a diagram to help explain relationships in proofs. The red line in the diagram below is an auxiliary line.

When you know the measures of two angles of a triangle, you can use the Triangle Angle-Sum Theorem to find the measure of the third angle.

Example 1: Find the values of the variables.

$$
\begin{aligned}
& x+59+43=180 \\
& x+102=180 \\
& x=78 \\
& y+78=180 \\
& y=102
\end{aligned}
$$

$$
z+102+49=180
$$

An exterior angle of a polygon is an angle formed by a side and an extension of an adjacent side. For each exterior angle of a triangle, the two nonadjacent interior angles are its remote interior angles. In each triangle below, $\angle 1$ is an exterior angle and $\angle 2$ and $\angle 3$ are its remote interior angles.

Theorem 3-12 Triangle Exterior Angle Theorem
The measure of each exterior angle of a triangle equals the sum of the measures of its two remote interior angles.

$$
m \angle 1=m \angle 2+m \angle 3
$$

Example 2: Find the measures of the labeled angles.

$$
\begin{aligned}
\angle 1 & =80+18 \\
\angle 1 & =98^{\circ} \\
124 & =\angle 2+59 \\
65^{\circ} & =\angle 2
\end{aligned}
$$

$$
4
$$

Name
3.5

$$
\begin{array}{r}
p g .175-177 \# 9-24 \\
29-32 \\
43-46
\end{array}
$$

