

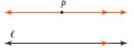
G.CO.10 Prove theorems about triangles . . . measures of interior angles of a triangle sum to 180°.

Objectives To use parallel lines to prove a theorem about triangles
To find measures of angles of triangles

rake note

Postulate 3-2 Parallel Postulate

Through a point not on a line, there is one and only one line parallel to the given line.

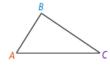


There is exactly one line through P parallel to ℓ .

take note

Theorem 3-11 Triangle Angle-Sum Theorem

The sum of the measures of the angles of a triangle is 180.

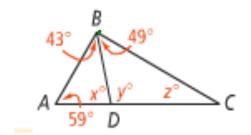


 $m \angle A + m \angle B + m \angle C = 180$

The proof of the Triangle Angle-Sum Theorem requires an *auxiliary line*. An **auxiliary line** is a line that you add to a diagram to help explain relationships in proofs. The red line in the diagram below is an auxiliary line.

When you know the measures of two angles of a triangle, you can use the Triangle Angle-Sum Theorem to find the measure of the third angle.

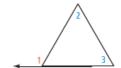
Example 1: Find the values of the variables.



$$Z+102+49=180$$

 $Z+151=180$
 $Z=29$

An exterior angle of a polygon is an angle formed by a side and an extension of an adjacent side. For each exterior angle of a triangle, the two nonadjacent interior angles are its remote interior angles. In each triangle below, $\angle 1$ is an exterior angle and $\angle 2$ and $\angle 3$ are its remote interior angles.



take note

Theorem 3-12 Triangle Exterior Angle Theorem

The measure of each exterior angle of a triangle equals the sum of the measures of its two remote interior angles.

Example 2: Find the measures of the labeled angles.

$$124 = 22 + 59$$

 $65^{\circ} = 22$