4.6 Medians of a Triangle

Objective: Identify medians in triangles.
Use properties of medians to find lengths.

A median of a triangle is a segment from a vertex to the midpoint of the opposite side.

The three medians of a triangle intersect at a point called the centroid.

Intersection of Medians of a Triangle Theorem: The medians of a triangle intersect at the centroid, a point that is two thirds of the distance from each vertex to the midpoint of the opposite side.

Vertex
$=\frac{2}{3} \cdot$ Whole
$\underset{\text { port }}{\text { side }}=\frac{1}{3} \cdot \underset{\substack{\text { wholian } \\ \text { med }}}{\substack{\text { and }}}$

Checkpoint at the top of page 209.

1. $B D=24=$ whole

$$
\begin{aligned}
B E=\text { vertex } & B E=\frac{2}{3}(24) \\
E D=\text { side } & B E=16 \\
E D=\frac{1}{3}(24) & \\
E D=8 &
\end{aligned}
$$

$$
\text { side }=\frac{1}{3} \text { whole }
$$

2. $J K=4=$ side $\quad J G=$ whole $K G=$ vertex
3. $4=\frac{1}{3} J G-3$

$$
12=J G
$$

$$
\begin{aligned}
& K G=\frac{2}{3}(12) \\
& K G=8
\end{aligned}
$$

6. $P Q=$ side $\quad P N=$ whole $\quad Q N=20=$ vertex

$$
\begin{aligned}
\frac{3}{2} \cdot 20=\frac{2}{3} P N \cdot \frac{3}{2} & P Q=\frac{1}{3}(30) \\
30 & =P N \\
P Q & =10
\end{aligned}
$$

$$
\begin{aligned}
& \text { Name } \\
& \begin{array}{l}
\text { 4.6 } \\
\text { pg. } 209-211
\end{array}+1 \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& 11-8 \\
& 19-23
\end{aligned}
$$

