3.2 Theorems About Perpendicular Lines

Words: All right angles are congruent.
Symbols: If $\mathrm{m} \angle \mathrm{A}=90^{\circ}$ and $\mathrm{m} \angle \mathrm{B}=90^{\circ}$, then $\angle A \cong \angle B$.

Words: If two lines are perpendicular, then they intersect to form four right angles.
Symbols: if $\mathrm{n} \perp \mathrm{m}$, then $\mathrm{m} \angle 1=90^{\circ}, \mathrm{m} \angle 2=90^{\circ}, \mathrm{m} \angle 3=90^{\circ}$, and $\mathrm{m} \angle 4=90^{\circ}$.

Checkpoint in the middle of page 115.

1. True, all right angles are \cong.
2. True, if 2 lines are 1 , then they form 4 rightangles and all right angles are \cong.
3. False
4. True, if 2 lines are \perp, then they form 4 right angles, and all right angles are \cong.
5. False
6. True, if 2 lines are \perp, then they form 4 right angles, and all right angles are \cong.

Words: If two lines intersect to form adjacent congruent angles, then the lines are perpendicular.
Symbols: If $\angle 1 \cong \angle 2$, then $\overleftrightarrow{\mathrm{AC}} \perp \overleftrightarrow{\mathrm{BD}}$.

Words: If two sides of adjacent acute angles are perpendicular, then the angles are complementary.
Symbols: If $\overrightarrow{E F} \perp \overrightarrow{E H}$, then $\mathrm{m} \angle 3+\mathrm{m} \angle 4=90^{\circ}$.

Checkpoint on the bottom of page 116.

$$
\text { 7. } \begin{array}{rlrl}
\frac{5 x}{5} & =\frac{90}{5} & \text { 8. } 36+9 y & =90 \\
x & =18 & -36 & -36 \\
\frac{9 y}{9} & =\frac{54}{9} \\
y & =6
\end{array}
$$

9. $z+z=90$

$$
\begin{aligned}
\frac{2 z}{2} & =\frac{90}{2} \\
z & =45
\end{aligned}
$$

