1-8 Perimeter, Circumference, and Area

The perimeter P of a polygon is the sum of the lengths of its sides. The area A of a polygon is the number of square units it encloses. For figures such as squares, rectangles, triangles, and circles, you can use formulas for perimeter (or circumference C for circles) and area.

ake note
 Key Concept Perimeter, Circumference, and Area

Square

side length s

$$
\begin{aligned}
& P=4 s \\
& A=s^{2}
\end{aligned}
$$

Rectangle

base b and height h

$$
\begin{aligned}
P= & 2 b+2 h, \text { or } \\
& 2(b+h) \\
A= & b h
\end{aligned}
$$

Triangle

side lengths a, b, and c, base b, and height h

$$
\begin{aligned}
& P=a+b+c \\
& A=\frac{1}{2} b h
\end{aligned}
$$

Circle

radius r and diameter d

$$
\begin{aligned}
& C=\pi d, \text { or } C=2 \pi r \\
& A=\pi r^{2}
\end{aligned}
$$

The units of measurement for perimeter and circumference include inches, feet, yards, miles, centimeters, and meters. When measuring area, use square units such as square inches $\left(\mathrm{in} .{ }^{2}\right)$, square feet $\left(\mathrm{ft}^{2}\right)$, square yards $\left(\mathrm{yd}^{2}\right)$, square miles $\left(\mathrm{mi}^{2}\right)$, square centimeters $\left(\mathrm{cm}^{2}\right)$, and square meters $\left(\mathrm{m}^{2}\right)$.

1. You want to frame a picture that is 5 in . by 7 in . with a 1 -in.-wide frame.
a. What is the perimeter of the picture?
b. What is the perimeter of the outside edge of the frame?

You can name a circle with the symbol \odot. For example, the circle with center A is written $\odot A$.

Problem 2 Finding Circumference

What is the circumference of the circle in terms of π ? What is the circumference of the circle to the nearest tenth?

B $\odot T$

4. You are designing a poster that will be 3 yd wide and 8 ft high. How much paper do you need to make the poster? Give your answer in square feet.
5. The diameter of a circle is 14 ft .
a. What is the area of the circle in terms of π ?
b. What is the area of the circle using an approximation of π ?

The area of a region is the sum of the areas of its nonoverlapping parts.
b. What is the area of the figure at the right?

