1-7 Midpoint and Distance in the Coordinate Plane

Key Concept Midpoint Formulas

Description

On a Number Line

The coordinate of the midpoint is the *average* or *mean* of the coordinates of the endpoints.

In the Coordinate Plane

The coordinates of the midpoint are the average of the *x*-coordinates and the average of the *y*-coordinates of the endpoints.

Formula

The coordinate of the midpoint M of \overline{AB} is $\frac{a+b}{2}$.

Given \overline{AB} where $A(x_1, y_1)$ and $B(x_2, y_2)$, the coordinates of the midpoint of \overline{AB} are $M(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$.

Diagram

Problem 1

Finding the Midpoint

▲ AB has endpoints at -4 and 9. What is the coordinate of its midpoint?

B \overline{EF} has endpoints E(7, 5) and F(2, -4). What are the coordinates of its midpoint M?

The midpoint of \overline{CD} is M(-2,1). One endpoint is C(-5,7). What are the coordinates of the other endpoint D?

Key Concept Distance Formula

The distance between two points $A(x_1, y_1)$ and $B(x_2, y_2)$ is

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Problem 3 Finding Distance

What is the distance between U(-7, 5) and V(4, -3)? Round to the nearest tenth.

Lesson Check

Do you know HOW?

- **1.** \overline{RS} has endpoints R(2, 4) and S(-1, 7). What are the coordinates of its midpoint M?
- **2.** The midpoint of \overline{BC} is (5, -2). One endpoint is B(3, 4). What are the coordinates of endpoint C?
- **3.** What is the distance between points K(-9, 8) and L(-6, 0)?