

Midpoint and Distance in the Coordinate Plane

take note

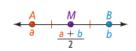
Key Concept Midpoint Formulas

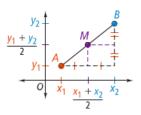
Description

On a Number Line

The coordinate of the midpoint is the *average* or *mean* of the coordinates of the endpoints.

In the Coordinate Plane

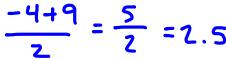

The coordinates of the midpoint are the average of the *x*-coordinates and the average of the *y*-coordinates of the endpoints.


Formula

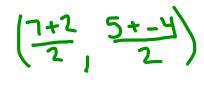
The coordinate of the midpoint M of \overline{AB} is $\frac{a+b}{2}$.

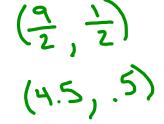
Given \overline{AB} where $A(x_1, y_1)$ and $B(x_2, y_2)$, the coordinates of the midpoint of \overline{AB} are $M(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}),$

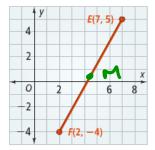
Diagram



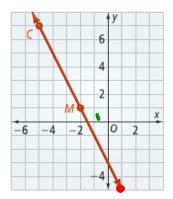
Problem 1


Finding the Midpoint


 \triangle \overline{AB} has endpoints at -4 and 9. What is the coordinate of its midpoint?



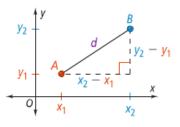
B \overline{EF} has endpoints E(7,5) and F(2,-4). What are the coordinates of its midpoint M?



Problem 2 Finding an Endpoint

The midpoint of \overline{CD} is M(-2, 1). One endpoint is C(-5, 7). What are the coordinates of the other endpoint D?

D(x, y)



$$2.\frac{-5+x}{2} = -2.2$$

Key Concept Distance Formula

The distance between two points $A(x_1, y_1)$ and $B(x_2, y_2)$ is

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Problem 3

Problem 3 Finding Distance

What is the distance between U(-7, 5) and V(4, -3)? Round to the nearest tenth.

```
Name

1.7

pg. 54-55 # 6-30 even,

36-44 even,

48-50

62-64

Notes 1.8
```