1-2 Points, Lines, and Planes

Objective To understand basic terms and postulates of geometry

Key Concept Undefined Terms

Term Description
A point indicates a location and has no size.

A line is represented by a straight path that extends in two opposite directions without end and has no thickness. A line contains infinitely many points.

A plane is represented by a flat surface that extends without end and has no thickness. A plane contains infinitely many lines.

How to Name It

You can represent a point by a dot and name it by a capital letter, such as A.

You can name a line by any two points on the line, such as $\overleftrightarrow{A B}$ (read "line $A B^{\prime \prime}$) or $\overparen{B A}$, or by a single lowercase letter, such as line ℓ.

You can name a plane by a capital letter, such as plane P, or by at least three points in the plane that do not all lie on the same line, such as plane $A B C$.

Diagram

Points that lie on the same line are collinear points. Points and lines that lie in the same plane are coplanar. All the points of a line are coplanar.

Problem 1 Naming Points, Lines and Planes

A What are two other ways to name $\overleftrightarrow{Q T}$? NT TR m
B What are two other ways to name plane P ? plane VRQ, plane VRS
C What are the names of three collinear points? What are the names of four coplanar points?

V, R, Q, S T,Q,N

A geometric figure is a set of points.

Space is the set of all points in three dimensions.
Key Concept Defined Terms

Problem 2 Naming Segments and Rays

© What are the names of the segments in the figure at the right?

B What are the names of the rays in the figure?

C Which of the rays in part (B) are opposite rays?
$\overrightarrow{E F}$ and $\overrightarrow{E D}$

A postulate or axiom is an accepted statement of fact. Postulates, like undefined terms, are basic building blocks of the logical system in geometry. You will use logical reasoning to prove general concepts in this book.

Postulate 1-1

Through any two points there is exactly one line.
Line t passes through points A and B. Line t is the only line that passes through both points.

When you have two or more geometric figures, their intersection
is the set of points the figures have in common.

This is an example of an intersection that you should be familiar with from Algebra 1.

Postulate 1-2

If two distinct lines intersect, then they intersect in exactly one point.
$\overleftrightarrow{A E}$ and $\overleftrightarrow{D B}$ intersect in point C.

Postulate 1-3

If two distinct planes intersect, then they intersect in exactly one line.

Plane RST and plane WST intersect in $\overleftrightarrow{S T}$.

Problem 3 Finding the Intersection of Two Planes

Each surface of the box at the right represents part of a plan@ What is the intersection of plane $A D C$ and plane $B F G$?

When you name a plane from a figure like the box in Problem 3, list the corner points in consecutive order. For example, plane $A D C B$ and plane $A B C D$ are also names for the plane on the top of the box. Plane $A C B D$ is not.

Postulate 1-4

Through any three noncollinear points there is exactly one plane.

Points Q, R, and S are noncollinear. Plane P is the only plane that contains them.

Problem 4 Using Postulate 1-4

Use the figure at the right.
(4) What plane contains points N, P, and Q ? Shade the plane.

B What plane contains points J, M, and Q ? Shade the plane.

Name 12 $p g .16-19$ $\# 8-14$ $16-26$ even $27-32$ Notes 1.3 $40-45$ $53-58$ $65-68$ 		

